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Synchronization in systems with multiple time delays
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We report on chaos synchronization between two unidirectionally coupled chaotic systems with multiple
time delays and find both the existence and stability conditions for anticipating, lag, inverse and complete
synchronizations. The method is tested on the famous lkeda model. Numerical simulations fully support the
analytical approach.
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I. INTRODUCTION dx
. ) _ X 4 +
Seminal papers on chaos synchronizafibhhave stimu- a_ < Myf(Xz,) + maf (), @
lated a wide range of research activ[B8]. Synchronization
phenomena in coupled systems have been especially exten- dy
sively studied in the context of laser dynamics, electronic qt -y T meflyn) + maf(y,) +Ki(xy), (2)

circuits, chemical and biological systerf&y. Application of
chaos synchronization can be found in secure communicayhere f is the differentiable generic nonlinear function.

tion, optimization of nonlinear system performance, model-Throughout this papex,=x(t-7). One finds that under the
ing brain activity and pattern recognition phenom¢ah condition

Due to finite signal transmission times, switching speeds
and memory effects systems with both single and multiple K'=my - mg,m,=my, 3
delays are ubiquitous in nature and technol@gly Dynam-
ics of multifeedback systems are representative examples
the multidelay systems. Therefore the study of synchroniza- Y=X, . (4)
tion phenomena in time-delayed systems is of high practical 3
importance. Prominent examples of such dynamics can béhis follows from the dynamics of the errdr=x,_ _, -y
found in biological and biomedical systems, laser physics,
integrated communicatior{$]. In laser physics such a situ- aa__ A +meA_f' (X)) +MpA_f'(X.brn).  (5)
ation arises in lasers subject to two or more optical or dt 1 3 2 28
electro-optical feedback. Second optical feedback could b
useful to stabilize laser intensity4]. Chaotic behavior of

gqu.(l) and(2) admit the synchronization manifold

Fleref’ stands for the derivative dfwith respect to time and

laser systems with two optical feedback mechanisms is stucihe (je_rlvatlve Sh.OL.”d be_ _bounded. The sufficient stability
ied in recent workg5]. To the best of our knowledge, chaos condition of the tr|v_|_al solitiolA=0 of_Eq.(5) can be found
synchronization between the multifeedback systems is yet t§0M the Krasovskii-Lyapunov functional approadf], p.

be investigated. Having in mind enormous application impli-154 (see also seminal papid] on the first application of the-
cations of chaos synchronization, e.g., in secure communicaSrasovskii-Lyapunov functional to chaos synchronization in
tion, investigation of synchronization regimes in the multi- time-delayed systemsAccording to[3], the sufficient stabil-
feedback systems is of certain importance. ity condition for the trivial solutionA=0 of time-delayed

Recently there have been several reports on synchronizequation dA/dt=-r(t)A+s;()A, +s,(HA, is r(t)> |s1(t)]
tion in the systems with multiple delays. [6] the authors +|s,(t)|. Thus we obtain that the sufficient stability condition
studied unidirectionally coupled discrete systems; paperfor the synchronization manifolg=x,._,. (4) can be written
[7,8] deal with bidirectionally coupled multiple-delay sys- ot
tems.

In this paper we investigate synchronization between two a > [mg(supf’(x,))| + [ma(supf’ (X, )| (6)
unidirectionally coupled continuous chaotic systems with , i
mutiple time delays and find both the existence and stability1€re SUF’(X) stands for the supremum éf with respect to
conditions for different synchronization regimes. We test thelh® appropriate norm. _
approach on the paradigm Ikeda model. We support the ana- Analogously one finds both the existenge,—K=m,,

lytical approach with numerical simulations. my=mg) and sufficient stability [a>|ms(supf’(x,))|
+|m2(supf’(x72+T3_Tl))|] conditions for synchronization

IIl. GENERAL APPROACH manifoldy=x, _,. One can also find the existenge,=m,

Consider synchronization between the double-feedbackK, m,=m,) and sufficient stability[a>|m3(supf’(x73))|
systems of general form, +|m, sup(f’ (X,,+-,--,))[] conditions for the inverse synchro-

nization[10] manifoldy=-x; . (we notice that this result is
valid if f is an odd function ok). Further generalization of
*Email address: shahverdiev@physics.ab.az the approach to-tuple feedback systems, i.e., systems with
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multiple delays of typg1l) and (2) is straightforward. We 4
underline that a stability condition derived from the
Krasovskii-Lyapunov approach is a sufficient condition: it
assures a high quality synchronization for a coupling
strength estimated from the stability condition, but does not
forbid the possibility of synchronization with smaller cou-
pling strengths. The threshold coupling strength can be esti
mated by the dependence of the maximal Lyapunov expos .
nent\ of the error dynamics oK, i.e., from\(K)=0 [9]. )

-1

IIl. CHAOS SYNCHRONIZATION BETWEEN THE IKEDA
SYSTEMS WITH MULTIPLE DELAYS 27

b

In this section of the paper we test the approach presente
in Sec. Il on the Ikeda model-paradigm model in chaotic
dynamics. Consider synchronization between the multifeed- -4; s 7 L r m 5 ryRETe—
back lkeda systems, t

IS

dx FIG. 1. Numerical simulation of the lkeda model, E@#) and

a =—-ax+m Sianl"' szinXTZ, (7) (8): the time series of the drivex(t) (solid line) and the driven
system y(t) (dotted ling for a=5, m=1, =2, 73=3, m
=-20,mz=-3, my=m,;=-1, andK=-17. Dimensionless units.

d
—y=—ay+ mgsiny, +mysiny, +Ksinx,, (8)

dt By using the Krasovskii-Lyapunov functional approach
we obtain that the sufficient stability condition for the syn-

with positive a; , and -my 5 3 4 hronizati ifold/= b itt
This investigation is of considerable practical importance Sronization manifold/=x; _,, can be written as

as the equations of the class B lasers with feedlgggkcal
representatives of class B are solid-state, semiconductor, and
low pressure CQlasers[11]) can be reduced to an equation
of the Ikeda typg12].

The Ikeda model was introduced to describe the dynamicés Eq.(11) is valid for smallA stability condition(12) found
of an optical bistable resonator, plays an important role irebove holds locally. Conditiond.0) are the existence condi-
electronics and physiological studies and is well-known fortions for the synchronization manifol®) between unidirec-
delay-induced chaotic behaviof13,14; see also, e.g. tionally coupled Ikeda systen{g) and(8) with multiple de-
[10,13. Physicallyx is the phase lag of the electric field lays.
across the resonatog; is the relaxation coefficient for the We would like to emphasize that conditio(k0) and(12)
driving x and driveny dynamical variablesy, , andmg 4are  can be satisfied easily, as the number of parameters exceeds
the laser intensities injected into the driving and driven systhe number of restrictions. In the cases of parameter mis-
tems, respectivelyr, , are the feedback delay times in the matches(e.g., my#m,, m;—-K#m,, the feedback delay
coupled systemsz; is the coupling delay time between sys- times are different for the driver and driven systems,)etc.
temsx andy; K is the coupling rate between the driveand i.e., in the study of nonidentical coupled systems generalized

a > |mg| +[my|. (12

the response system synchronizatior{16] between the driver and driven systems
We establish that systenig) and(8) can be synchronized is observed under sufficiently strong driving, when there is
on some functional relation between the states of response and
: drive, i.e.,y(t)=F(x(t)). One can use the auxiliary system
Y= Xegry © method to detect generalized synchronization: that is given

another identical driven auxiliary systemngeneralized syn-

as the error signah=x,. . -y for small A under the condi- N A : : >
st chronization betweer andy is established with the achieve-

tion N .
ment of complete synchronization betwegandz. Investi-
K=m—mg,m,=m, (10 gation of generalized synchronization in systems with
. multiple time delays is under progress and will be presented
obey the dynamics elsewhere
d By investigating corresponding error dynamics we find

A
P al +MgA, COSX;, + MpA,, COSXr s (11)  thaty=x, _, is the synchronization manifold between sys-
tems(7) and(8) with the existencan,—K=m, and m;=mg
It is obvious thatA=0 is a solution of systerfl1l). We notice  and stability conditionsy> |mg|+|m,|.

that for 73> 7, 3=, and 3<7; (9) is the retarded, com- One can generalize the previous result:nttuple feed-
plete, and anticipating synchronization manif¢ldt, 10,15, back Ikeda systems. Applying the error dynamics approach
respectively. to synchronization between the following lkeda models
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FIG. 2. Numerical simulation of the lkeda model, E¢#. and
(8): the time series of the drivex(t) (solid line) and the driven
systemy(t) (dotted ling for a=5, =2, =3, 73=1, my=my=-2,
m,=-18,m;=-1, andK=-17. Dimensionless units.

dx . . .
— = —axX+my Sinx, + My, Sinx_ + -+ + My, Sinx, ,
dt T 2 Tn
(13
dy . .
at ay +my siny, +my siny,,

+ o+ mysiny, +Ksinx,, (14)
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FIG. 4. Numerical simulation of systengg) and(8): synchro-
nization betweery and x. The parameters are=5, =1, 7,=2,
m3=1, m=-20, mz=-3, my=m,=-1, andK=-1000. Dimension-
less units.

=my, and m,,=m,, are the existence conditions, and
> |myy|+|myy |+ - +|my, | is the sufficient stability condition.
Numerical simulations fully support the analytical results.
Equationg7) and(8) were simulated using the DDE23 pro-
gram[17] in MATLAB 6. Figure 1 shows the time series of the
driver x(t) (solid line) and the driven systerny(t) (dotted
line) for =5, 7=1, =2, 3=3, M=-20, m;=-3, m,
=m,=-1, andK=-17. After transients the driven system
shifted 73— 7,=2 time units to the right ang=x(t-2) (lag
synchronization In Fig. 2 the time series of the drive(t)

we find that the existence and sufficent stability conditions(solid line) and the driven systery(t) (dotted ling for

e.g., for the synchronization manifolg=x_ -, arezmy,—K
=My, M=y, and a>|my|+[mp |+~ +[m,|, respec-

tively. For the synchronization manifolglzxfk_fz, My, —K
4
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FIG. 3. Numerical simulation of systengg) and(8): complete
synchronization betweey andx. The parameters ar@=5, =1,
7,=2, 13=1, m;=-20, mg=-3, my=m,=-1, andK=-17. Dimen-
sionless units.

:5, ’7'1:2, T2:3, T3:1, m1:m3:_2, m2:_18, m4:_1 and
K=-17. After transients the driven system shifteg-7,=

-2 time units to the left ang=x(t+2) (anticipating synchro-
nization). Figure 3 shows complete synchronization between
x and y for the parametersx=5, 7=1, =2, 3=1, m

2

05

=}

FIG. 5. Numerical simulation of systenig) and(8): the depen-
dence ofy on x. The parameters are=5, =1, 7,=2, 3=1, m
=-20,mg=-3, my=my=-1, andK=-8. Dimensionless units.
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=-20,my=-3, my=m,=-1, andK=-17. In Fig. 4 synchro- multiple delays. We have found the necessary and sufficient
nization betweerx andy is shown fora=5, 7,=1, =2, stability conditions for the anticipating, lag, complete, and
73=1, m=-20, my=-3, my=m,=-1, and K=-1000. We inverse synchronization manifolds. We have successfully ap-
emphasize that as the coupling strength estimated from thalied the approach to the paradigm model in nonlinear
stability condition gives a high-quality synchronization, the physics—the Ikeda model. This research is of certain practi-
synchronization manifold is robust against perturbations otal importance. It is well known that laser arrays hold great
the coupling strength. But as mentioned above the onset giromise for space communication applications, which re-
synchronization occurs at the coupling stength when theuire compact sources with high optical intensities. The most
maximal Lyapunov exponent of the error dynamics vanishegfficient result can be achieved when the array elements are
as function ofK. Our estimations show that for the param- synchronized. Additional feedback mechanism could be use-
eters values as in Fig. 3 the threshold valuekofis K ful to stabilize nonlinear system’s output, e.g., laser
~-9.82, which is(in absolute valuesfar less tharK=-17. intensity. Also having in mind different application possi-
Figure 5 shows the dependenceybn x for a=5, r,=1, bilities of chaos synchronization, synchronization in multi-
=2, 3=1, m=-20,m3=-3, my=m,=-1, andK=-8. feedback systems can provide more flexibility and opportu-
nities in practical applications.
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